On the shortness exponent of 1-tough, maximal planar graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An update on non-Hamiltonian 54-tough maximal planar graphs

Studying the shortness of longest cycles in maximal planar graphs, we improve the upper bound on the shortness exponent of the class of 54 -tough maximal planar graphs presented by Harant and Owens [Discrete Math. 147 (1995), 301–305]. In addition, we present two generalizations of a similar result of Tkáč who considered 1-tough maximal planar graphs [Discrete Math. 154 (1996), 321–328]; we rem...

متن کامل

On properties of maximal 1-planar graphs

A graph is called 1-planar if there exists a drawing in the plane so that each edge contains at most one crossing. We study maximal 1-planar graphs from the point of view of properties of their diagrams, local structure and hamiltonicity.

متن کامل

On the M-polynomial of planar chemical graphs

Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...

متن کامل

Spanning Maximal Planar Subgraphs of Random Graphs

We study the threshold for the existence of a spanning maximal planar subgraph in the random graph Gn . We show that it is very near p = ~TTOWe also discuss the threshold for the existence of a spanning maximal outerplanar subgraph. This is very near

متن کامل

On the Number of Upward Planar Orientations of Maximal Planar Graphs

We consider the problem of determining the maximum and the minimum number of upward planar orientations a maximal planar graph can have. We show that n-vertex maximal planar graphs have at least Ω(n · 1.189) and at most O(n · 4) upward planar orientations. Moreover, there exist n-vertex maximal planar graphs having as few as O(n · 2) upward planar orientations and n-vertex maximal planar graphs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1996

ISSN: 0012-365X

DOI: 10.1016/0012-365x(94)00356-n